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The size distribution of inhabited planets
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ABSTRACT
Earth-like planets are expected to provide the greatest opportunity for the detection of life
beyond the Solar system. However, our planet cannot be considered a fair sample, especially if
intelligent life exists elsewhere. Just as a person’s country of origin is a biased sample among
countries, so too their planet of origin may be a biased sample among planets. The magnitude
of this effect can be substantial: over 98 per cent of the world’s population live in a country
larger than the median. In the context of a simple model where the mean population density is
invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour)
has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to
hold not only for planets hosting advanced life, but also for those which harbour primitive life
forms. Further, inferences may be drawn for any variable which influences population size. For
example, since population density is widely observed to decline with increasing body mass,
we conclude that most intelligent species are expected to exceed 300 kg.

Key words: extraterrestrial intelligence – astrobiology – methods: statistical – planets and
satellites: detection.

1 IN T RO D U C T I O N

The discovery of extra-terrestrial life stands as one of the most ambi-
tious objectives in modern scientific endeavour. Over one thousand
distant planets have now been identified, spanning a broad spectrum
of sizes and orbital configurations (Pepe et al. 2011; Bonfils et al.
2013; Petigura, Howard & Marcy 2013; Rice 2014). Since many
more await detection, only a small fraction can be subject to detailed
follow-up investigations. We must therefore identify those deemed
most likely to host life. At present the Earth is our only example of
an inhabited planet, so its physical characteristics appear to provide
a natural template for finding life elsewhere. However, as we shall
see, selection effects may have biased our observational sample.

It has often been postulated that our existence in the Universe
could explain the magnitudes of various quantities in fundamen-
tal physics, such as the fine-structure constant, the cosmological
constant and primordial density perturbations (Carter 1974; Carter
& McCrea 1983; Weinberg 1987; Efstathiou 1995; Vilenkin 1995;
Tegmark & Rees 1998; Tegmark et al. 2006; Peacock 2007; Piran
& Jimenez 2014). If an ensemble of cosmological conditions exists,
we should expect to observe those which permit the emergence of
life. Or more specifically, those which maximize the abundance of
life. While this Letter will follow a similar line of reasoning, our
approach differs from most in that there is no requirement for an
ensemble of universes to exist.

The physical characteristics of the Earth are considered to be
the gold standard for habitability (see e.g. Kasting, Whitmire &
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Reynolds 1993; Schulze-Makuch et al. 2011). However, for any
non-singular distribution of population sizes, typical beings do not
live within typical (median) populations. This is a statistical tru-
ism, yet it ensures that a violation of the mediocrity principle is
inevitable. That we should expect to be a part of a large civilization
has been stated previously by Gott (1993). Here, we elaborate on
this by considering the bias induced on observables which influence
population size, such as the size of the host planet. We shall also
generalize this result to incorporate the broader collection of planets
which harbour primitive life forms.

2 PO P U L AT I O N B I A S

In the absence of any extra information, the probability of belonging
to a particular group is proportional to the total membership of
that group. This selection effect is apparent in numerous personal
characteristics: your blood type, your class size at school, your
employer, and your geographic location. It seems unremarkable
to note that you are more likely to have a common blood type
than a rare one, or that you are more likely to be living in China
than the Cayman Islands. But if mankind’s colonization had spread
beyond multiple continents to include another planet, the likelihood
of belonging to this second planet must be weighted in the same
manner. Of particular importance to this Letter is the following
supposition: if the second colony had not arrived from Earth but
instead evolved independently, it appears difficult to justify why
our calculation should no longer hold.

Throughout this Letter we shall assume that the Universe hosts
an ensemble of planets with advanced civilizations. We define an
advanced civilization as a population of observers which has (a)
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colonized most of its host planet/moon and (b) developed sufficient
intelligence to contemplate the existence of other inhabited planets.
It is helpful to express the total number of observers N produced by
a given civilization in the form

N = xL

R
. (1)

Here, L is the longevity of the civilization, over which time it sus-
tains a mean population size x. The mean lifespan averaged over
all individuals is denoted by R. No assumption is made regarding
the temporal variation of either the population size or birth rate. If
the ensemble of civilizations is suitably large we may consider a
continuous probability distribution for the set of civilization char-
acteristics C ≡ {x, L, R, . . .}. This encompasses a broad range of
variables, including the physical characteristics of the host planet,
such as its radius, density, and atmospheric properties.

We wish to determine how a civilization selected at random,
such as our nearest neighbour, compares to our own. Our nearest
neighbour is drawn from the ensemble of civilizations which exist
today, p(C|T ), at a fixed time T. The Earth is drawn from a different
distribution, p(C|I ), the ensemble of civilizations as sampled by a
random observer, I. Using Bayes’ theorem, p(C|T ) ∝ Lp(C), since
p(T |C) ∝ L, demonstrating that we are more likely to co-exist with
long lived civilizations. Similarly, we find p(C|I ) ∝ N p(C). Sub-
stituting (1), these two distributions are then related by p(C|I ) ∝
x
R

p(C|T ). In order to determine the probability distribution for a
single element θ ∈ C, we marginalize over all other parameters,
yielding

p(θ |I ) ∝ p(θ |T )E

(
x

R

∣∣∣∣∣θ, T

)
, (2)

where the conditional expectation is defined as follows:

E

(
x

R

∣∣∣∣∣θ, T

)
≡

“
x

R
p(x,R|θ, T )dx dR . (3)

This is a general result, which makes no assumptions regarding the
functional form of p(x). If the expectation E

(
x
R
|θ, T

)
is sensitive

to the value of θ , then p(θ |I) will differ from p(θ |T). In other words,
provided the mean population of advanced civilizations is correlated
with any planetary characteristic, then the Earth is a biased sample
among inhabited planets. This is the central result of this Letter. We
now consider the particular case where the generic parameter θ is
taken to be the planet radius r.

3 PLANETA RY SELECTION EFFECTS

The distribution of planetary radii has now been measured down
to terrestrial sizes. Silburt, Gaidos & Wu (2015) found that across
the range 1 < r/r⊕ < 4, the distribution p(r) appears to be approx-
imately constant in log space. This was inferred from the radii of
planets discovered by the Kepler spacecraft, taking into account the
various observational selection effects. However, the distribution of
planetary radii which host life remains highly uncertain.

We seek to estimate the radius of another inhabited planet, such
as our nearest neighbour, which is drawn from p(r|T). The Earth’s
radius is our data point, representing a single sample drawn from
p(r|I). Ordinarily a solitary sample is insufficient to draw any con-
clusions about the range of the parent distribution, since an estimate
of the variance requires at least two points. However, when biased,
a single sample can be sufficient to impose a useful bound. For
example, rolling a die once does not reveal any information on the

values of the other faces. But if the die is loaded, such that each
face’s probability is proportional to its value, then we can infer from
a single throw that the other faces have values lower or very similar
to the observed face.

It would be unreasonable to expect the mean population of in-
habited planets to remain constant for different radii. The available
surface area increases, as does the total amount of available energy.
For small perturbations in planetary radius we should expect the
mean population density to remain approximately constant. This
suggests the expected population size rises as E(x|r, T) ∝ r2. This
scaling relation implies that the mean observed radius μI is related
to the mean radius μ by

μI = μ

(
1 +

2σ 2 + μ3
μ

σ 2 + μ2

)
, (4)

where σ 2 and μ3 are the variance and third moment of the distribu-
tion of inhabited radii. For any non-singular distribution (σ 2 > 0),
observers should expect to find themselves on a larger planet than
if the planet had been selected at random from the ensemble of
inhabited planets. The broader the distribution of radii, the stronger
the observational bias.

To progress quantitively, we marginalize over a family of possible
distributions for p(r|T). The functional form is not particularly im-
portant, although it should ensure p(r|T) falls to zero for very small
and very large values of r. Here, we adopt a Gaussian distribution in
log space, lnN (μr, σ

2
r ), marginalizing over its mean and variance.

The full posterior likelihood p(r|D, T) of inhabited planetary radii
given our data D (the radius of the Earth) is then

p(r|D,T ) ∝
“

p(D|μr, σr )p(r|μr, σr )π (μr, σ
2
r )dμrdσ 2

r , (5)

where we adopt a reference prior π (μr, σ
2
r ) ∝ σ−2

r .
Fig. 1 shows the likelihoods resulting from two different priors on

σ r. The thin solid line corresponds to a range of narrow distributions
0.05 < σ r < 0.2. For these low values of σ r, the total distribution
is narrow so radii far from the Earth are always disfavoured, and
we find r < 1.2r⊕ (95 per cent confidence bound). The thick solid
line spans 0.2 < σ r < 0.8, setting a tighter bound r < 0.9r⊕. At
these larger values of σ r, there is a strong selection effect at work,
as quantified by (4). This favours small planets, leaving the Earth
to appear highly atypical. More extreme values of σ r, either larger
or smaller than those considered here, only serve to tighten these
bounds on r further. The extent to which the Earth overestimates
the radii of other inhabited planets strongly depends on the choice
of prior. However, the conclusion that larger radii are disfavoured
is robust to the choice of prior on σ r.

Thus far we have deliberately neglected criteria which are con-
ventionally assumed to influence habitability. If the emergence of
life needs water, we can set a more stringent limit on the range of
habitable radii. The smallest planets are not expected to be able to
retain a thick enough atmosphere to sustain a water cycle. Truncat-
ing the posterior likelihood generated from the broad prior such that
p(r < 0.5r⊕) = 0 leads to a modest amplification of the likelihood
at larger radii, as shown by the dashed line. In this case, we find the
95 per cent confidence bound to be r < 1.4r⊕.

These results involve marginalizing over a range of possible dis-
tributions. Fig. 2 shows the specific case where σ r = 0.4 and μr = 1.
The contours reflect the 68 per cent and 95 per cent confidence lim-
its for the planet-sampled (solid) and observer-sampled (dashed)
distributions. At the smallest radii the distributions are truncated
due to atmospheric mass-loss. The planet inhabited by the typical
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Figure 1. Constraints on the radius r of an inhabited planet, based on a
constant mean population density, and after marginalizing over the μ and
σ parameters of the lognormal distribution. The thick and thin solid lines
correspond to the higher and lower set of σ values. The dashed line illustrates
the effect of imposing the condition r > 0.5r⊕, as may be the requirement
for an atmospheric water cycle. A common feature is the manner in which
super-Earths are disfavoured, regardless of the choice of prior. Broad and
narrow lines yield 95 per cent confidence bounds of r < 0.9r⊕ and r < 1.2r⊕,

respectively, while the dashed line sets r < 1.4r⊕. For reference, the radii
of Europa and Mars are 0.25r⊕ and 0.53r⊕, respectively.

Figure 2. An illustration of the biases in both population and planet size
which can be induced when sampling on a per-individual basis rather than
a per-population basis. The solid contours represent where 68 per cent
and 95 per cent of civilizations would be found in this model. The dashed
contours represent the distribution as sampled by an individual. In each
case the median values are highlighted by dotted lines. In this example
we calibrate the per-individual median to that of the Earth’s volume and
estimated population of seven billion, yielding a typical civilization of 15
million inhabiting a host planet approximately half the size of the Earth.

observer is over five times larger than the median planet size. The
magnitude of this bias is predominantly determined by the breadth
of the distribution, σ r.

Note that we have only estimated the relative abundance of inhab-
ited planets, and make no statement regarding their overall preva-

lence in the Universe. These results are insensitive to the distribution
of population sizes (it need not be lognormal), to the variables which
appear in the Drake equation (Drake & Sobel 1992), and to the nu-
merous variables which influence population size, provided they
remain uncorrelated with planet size.

4 T H E D I S T R I BU T I O N O F P R I M I T I V E LI F E

Thus far our calculation applies to planets harbouring advanced
life forms. How does this relate to the question of where primitive
life resides? Primitive life-forms are a pre-requisite for advanced
life, and so their host planets must trace at least the same volume
of parameter space as those of intelligent species. The probability
density function for a planet hosting primitive life, p(r|P), may be
expressed as

p(r|P ) ∝ 1

η(r)
p(r|T ) , (6)

where η(r) is the proportion of life-bearing planets which host ad-
vanced life, as a function of radius r. If this function is constant,
η(r) = η0, then the two distributions are identical. However, larger
biospheres host a wider range of species and environments, and a
greater number of individual life-forms. For these reasons it appears
likely that larger planets possess a greater probability of producing
advanced life from a primitive state. If we conservatively adopt
η(r) ∝ r, the upper bound derived from the broad prior in Fig. 1
shrinks to yield r < 0.2r⊕. The truncated likelihood, as illustrated
by the dashed line in Fig. 1, tightens slightly to r < 1.2r⊕ (95 per cent
confidence bound).

Even if mankind represents the only form of advanced life in the
Universe, the fact that η(r) is likely to increase for larger values of
r suggests that the Earth is probably larger than most life-bearing
planets.

5 C H A R AC T E R I S T I C S O F A DVA N C E D
SPECIES

There are likely to be a number of other variables, aside from the
size of the host planet, which are subject to selection bias due to
their influence on population size. For example, species with a lower
body mass are able to sustain a higher population density. This is
a trend which has been extensively observed throughout the ani-
mal kingdom (Damuth 1981, 1987; Loeuille & Loreau 2006). One
proposed mechanism originates from Kleiber’s law, the scaling re-
lation linking the basal metabolic rate (BMR) to the body mass ms,
BMR ∝ m3/4

s (Kleiber 1932; Agutter & Wheatley 2004). Given the
finite energy resources available, population density drops as the
individual’s energy demand rises. Ants and termites vastly outnum-
ber humans due to their small size. If mankind tried to match their
population, our total metabolic demand would exceed the entire
solar flux incident upon our planet.

We adopt a scaling relation between mean population and body
mass given by E(x|ms, T ) ∝ m−3/4

s . Some variation in the value of
this exponent has been observed (Loeuille & Loreau 2006), how-
ever, these were generally found to be steeper relationships, thus our
model is a conservative one. It is also the case that larger animals live
longer (Speakman 2005; Hulbert et al. 2007), suggesting R ∝ m1/4

s .
Therefore, we estimate that the conditional expectation defined in
(3) is inversely proportional to body mass, E(x/R|ms, T ) ∝ m−1

s .
The distribution of body masses among species on Earth can be

well described by a lognormal (Greenwood et al. 1996). Again we
marginalize over the two lognormal parameters with a reference
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Figure 3. One-dimensional constraint on the body mass of an intelligent
species after marginalizing over the two lognormal parameters. The thin
dashed line represents our data point, at 70 kg, while the thick dashed line
represents the median mass, at 314 kg. This offset is predominantly due to the
expected fall in population size with increasing body mass. For reference
the adult African Elephant is approximately 6000 kg, while the heaviest
dinosaurs such as Argentinasaurus were thought to be approximately 105 kg
(Sellers et al. 2013).

prior π (μm, σ 2
m) ∝ σ−2

m . It would be extremely surprising if the
diversity in body mass among extra-terrestrial species is lower than
that amongst a small group of closely related species on Earth.
There are seven species of great ape, spanning gorillas, orangutans,
humans, and chimpanzees. Their body masses exhibit an inter-
species standard deviation in log space of σ m � 0.5, which serves
as our lower bound. For an upper bound we adopt σ m = 3, so as not
to greatly exceed the terrestrial variance.

Fig. 3 illustrates the probability density function for body mass,
as derived from our single data point of 70 kg. The median body
mass is found to be 314 kg, while the 95 per cent lower bound is
given by ms > 25 kg. It is likely some correlation exists between
planet size and median body mass, due to the influence of surface
gravity, but we do not attempt to model this here.

In order to further explore the range of variables which influence
the mean population size x, and are therefore susceptible to selection
bias, we can decompose the contributing factors as follows:

x = ηbA
Es

Ei
, (7)

where the physical factors are the available area A, and the energy
flux density at the surface Es. The biological terms are the energy
demand of the individual Ei, and the energy efficiency of the species
ηb. If the highest populations are resource limited, this may suggest
we are receiving an unusually high radiation flux Es. This could arise
either from being relatively close to our host star, or by possessing a
lower atmospheric opacity. In red dwarf systems most of the incident
radiation is in the infrared which could lead to considerably lower
values for Es.

6 C O N C L U S I O N S

On purely statistical grounds, any given individual should expect
to be part of a larger group, not an ordinary group. Therefore,
unless we are alone in the Universe, our planet is likely to be one
which produces observers at a higher rate than most other inhabited

planets. This may be accomplished by having a relatively large
population, in combination with a low individual life expectancy.
Any variable which correlates with population size will also be
subject to observational bias. By adopting a simple model where
the mean population density is constant, we find that an inhabited
planet selected at random has a radius r < 1.2r⊕ (95 per cent
confidence bound).

Our conclusions are not restricted to the search for intelligent life.
Provided the emergence of advanced life from primitive forms is
not more likely on smaller planets, then the upper bound r < 1.2r⊕
also applies to a planet hosting life of any kind.

Two distinct methods are currently being pursued for finding
life on exoplanets: biomarkers within the atmospheric spectra of
exoplanets (Hedelt et al. 2013), and somewhat more speculatively,
the reception of radio signals from advanced civilizations (Tarter
et al. 2011). In each case the signal is extremely challenging to
detect, and it is therefore vital to correctly prioritize the strongest
candidates. Larger planets and larger populations might provide
stronger signals. However, since they are expected to be relatively
scarce this gain may be offset by their greater distance from the
Earth.

Aside from the size of the host planet, there are a number of other
variables which influence population size, and these are also sub-
ject to observational bias. Throughout the animal kingdom, species
which are physically larger invariably possess a lower population
density, possibly due to their enhanced energy demands. As a re-
sult, we should expect humans to be physically smaller than most
other advanced species. By marginalizing over a feasible range of
standard deviations, we conclude that most species are expected to
exceed 300 kg in body mass. The median body mass is similar to
that of a polar bear.

While larger species possess larger brains, the correlation be-
tween brain size and intelligence is weak. Higher intelligence en-
ables the development of technologies which can sustain larger
population sizes. However it could also enable the longevity
of individuals to increase substantially, thereby pushing the se-
lection bias in the opposite direction. The net effect remains
unclear.

The degree to which mankind and the Earth are atypical hinges
on the level of diversity among advanced life forms. As we have
repeatedly learned from the discoveries of distant planets, and the
exploration of life on our own, nature is invariably more diverse
than we anticipate, not less.
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